
Decay cascades of acoustic phonons in calcium fluoride

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 8809

(http://iopscience.iop.org/0953-8984/1/45/006)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 20:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/45
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 1 (1989) 8809-8822. Printed in the UK 

Decay cascades of acoustic phonons in calcium fluoride 

M T Labrot'i. A P Mayeri, R K Wehneri and P E Obermayeri: 
+ Institut fur Theoretische Physik 11, Westfalische Wilhelms-Universitat Munster, 
4400 Munster. Federal Republic of Germany 
$ Institut fur Angewandte Physik. Universitat Regensburg, 8400 Regensburg, 
Federal Republic of Germany 

Received 31 January 1989 

Abstract. The temporal evolution of a spatially homogeneous non-equilibrium distribution 
of non-dispersive acoustic phonons is investigated for small occupation numbers in the 
presence of impurities as incoherent elastic scatterers. The phonon-phonon interaction 
governing the spontaneous decay via cubic anharmonicity is accounted for quantitatively on 
the basis of non-linear elasticity theory. The theoretical results are compared with the 
experimental data of Happek er al.  

1. Introduction 

The relaxation of phonon systems from states far from equilibrium has gained increasing 
interest during recent years and has been studied by various experimental and theoretical 
methods. In general, the relaxation processes depend on the initial conditions as well as 
on the details of the phonon-phonon interactions and interactions with impurities. In 
many cases, three-phonon processes due to cubic anharmonicity and elastic scattering 
by impurities including mode conversion may be considered as most important for the 
changesof the phonon occupation numbers inspace and time [ 11. In crystals at sufficiently 
low temperatures, after an initial period only the acoustic phonons play a role in the 
relaxation towards thermal equilibrium. While in the beginning the spontaneous decay, 
leading to cascades, is dominant (down-conversion), in the final stages the phonon- 
phonon scattering (up-conversion) also becomes important. Both processes can be 
treated satisfactorily in a quantitative manner on the basis of cubic anharmonicity. 

Transport equations, which govern the temporal and spatial evolution of the phonon 
occupation numbers in situations involving decay cascades, have been established and 
analysed in detail by Levinson and co-workers [2-81, and also by Schaich [9] and Wilson 
and Schaich [lo]. In particular, Kazakovtsev and Levinson [3] have shown that the 
phonon occupation numbers obey a scaling law as functions of time, space and frequency. 
Their results are mainly of a qualitative nature, since the detailed form of the phonon- 
phonon interaction has not been taken into account. In a frequency regime, where the 
dispersion can largely be neglected, the relaxation processes can be assessed quanti- 
tatively, because it bears the advantage that the anharmonic coupling coefficients are 
completely determined by the second- and third-order elastic moduli, and no lattice- 
dynamical models have to be invoked. 
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Happek et a1 [ 11,121 have studied experimentally decay cascades of acoustic phonons 
in the system CaF, : Eu2+ under spatially homogeneous conditions with no resolution of 
the propagation directions. For this system, they have rederived and experimentally 
confirmed the scaling law. The temporal behaviour of the phonon occupation numbers 
has then been determined by rate equations, into which the phonon-phonon interaction 
enters only via characteristic functions. For a quantitative comparison of their exper- 
imental results with the solution of the rate equations, Happek et a1 have used an ad hoc 
ansatz for the characteristic functions, the detailed behaviour of which is unknown so 
far. We have calculated these functions numerically for CaF, on the basis of non-linear 
elasticity theory, taking full account of the anisotropy and of the anharmonicity by using 
the experimentally known elastic constants of second and third order. As an initial 
condition for the relaxation process under consideration, we assume an incoherent non- 
equilibrium distribution of monochromatic phonons. For comparison with the available 
experimental data we have evaluated the rate equations of the phonon occupation 
numbers only with respect to averages over the propagation directions. The averaged 
phonon occupation numbers then depend only on the time, on the frequency and on the 
phonon branch. The phonon-phonon interactions enter the rate equations in the form 
of frequency-dependent and branch-dependent characteristic functions, 

For isotropic non-linear elastic media, which have been studied earlier numerically 
[ 131, the characteristic functions are given by analytic expressions. While the strength 
of the anharmonic coupling is completely determined in the present theory and no 
parameters had to be adjusted for agreement with experiment, the strength of the 
impurity scattering is actually not precisely known. In the long-wavelength limit, the 
scattering rate is proportional to the fourth power of the frequency. In our numerical 
study of the time behaviour of the phonon distribution function, we assume incoherent 
elastic scattering at mass defects with one free parameter. For a comparison with the 
experimental data of references [11] and [12], it is adequate to assume that the impurity 
scattering is very fast compared with the three-phonon processes. In this limit the spectral 
distribution of the total energy has been calculated by summation over the phonon 
branches. 

2. Dynamics of acoustic phonons in non-equilibrium 

In this paper the rate equations for the acoustic phonons are studied under special 
assumptions. The crystal is considered to be at zero temperature and the incoherently 
excited phonons are assumed to be homogeneously distributed in space. The occupation 
numbers of the acoustic phonons are treated as small compared with one, and conse- 
quently Peierls’ collision operator has been linearised. Instead of the number n9,(t) of 
phonons with wavevector q belonging to branchj, we use as dynamicvariable the number 
of phonons per units of volume, of frequency interval and of solid angle 

which we call the phonon distribution function. Here, q denotes the unit vector in the 
propagation direction and ut, denotes the phase velocity. For this quantity the phonon 
transport equation can be written under the above assumptions in the form 

f q , k  4 = (v2/4 , )n9 , ( t )  (2.1) 

f , (v ,  t )  = -2v5yqjf&, t )  + dv’y(v/v’,  q j ,  q ‘ j ’ ) ~ ’ ~ f ~ , ~ , ( v ’ ,  t )  
i’ 
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The terms on the right-hand side take into account phonon decay and defect scattering. 
Each process is characterised by a gain and a loss term. According to the dynamic theory 
of interacting phonons, the decay via cubic anharmonicity contributes to the quantities 
y ( v / v ’ ,  q j ,  q ’ j ’ )  in (2.2) the following terms: 

(2.3) 

where k = ( v / v ’ ) ( ~ ~ ~ , ~ / u ~ ~ ) q  and 
n 

y ( v / v ’ ,  q’j ’ -+ qj + q’ - kj”)  = (v’/v’2)[(2n)’v/u;/u;,,,] 

x IV,(-q’j’,kj,q’-ki”)1*6(~4,/, - k u i 1  - l q ‘ - k l ~ 4 , - ~ ~ ~ , ) .  (2.4) 
V denotes the crystal volume. The quantity y4,v5 is the imaginary part of the phonon 
self-energy at the frequency v .  The phonon lifetime is given by z = l/(2y4,v5). The 
v5-dependence of the lifetime of spontaneously decaying acoustic phonons has been 
observed experimentally for the first time by Baumgartner et a1 [14]. The reduced 
damping constants y4 = T , / v 5  have been calculated by Tamura and Maris [15,16] and 
Berke era1 [17] for a number of substances in the approximation of a dispersionless but 
anisotropic non-linear elastic continuum. In this approximation the phonon frequencies, 
polarisation vectors and coupling coefficients V 3  are determined by the elastic constants 
of second and third order. For our calculations the expression of V3 given in [17] has 
been used. The collinear and quasi-collinear decay discussed in [17] has not been taken 
into account in our calculations on the argument that, even for small values of the 
dispersion, its contribution to the damping constants can be expected to be negligibly 
small. y4, is connected with y ( v / v ’ ,  qj ,  q ‘ j ’ )  via the relation 

For the sake of simplicity, the defect scattering is considered here only in the form 
of incoherent elastic scattering by mass defects. For this type of defect simple explicit 
expressions can be used [NI:  

M ( q j ,  q ’ j ’ )  = 0 ~ ; ~ ( ~ ( 4 j ) - ~ ( q ’ j ’ ) ) ~ .  

The quantity ~ i s  proportional to the square of the mass excess and to the concentration 
of the defects. C denotes the unit polarisation vector. Since the particle number is 
conserved in the scattering processes, the relation 

M4, j ,  = 1 d 52 M ( q j ,  q ’ j ’ )  

holds. 

3. Averaged phonon distributions and characteristic functions 

Concerning the qualitative temporal behaviour of the phonon distribution function, the 
following frequency regimes can be distinguished. Since the phonon decay rate is 
proportional to a higher power of the frequency than the rate for elastic scattering, the 
latter may be neglected in a first approximation for phonons above a certain frequency. 
In this frequency regime, the longitudinal and fast-transverse components of an initial 
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non-equilibrium distribution give rise to fast decay cascades, in which slow-transverse 
phonons are generated. Apart from certain restricted areas of solid angle for the propa- 
gation directions, the spontaneous decay of the slow-transverse modes is negligible. On 
a timescale larger than that on which the fast cascades proceed, they will be down- 
converted by indirect processes, either via mode conversion due to elasticscattering [7 ,8]  
or via up-conversion into longitudinal or fast-transverse modes, which may subsequently 
decay into phonons of lower frequency (see appendix 2). Because of the anisotropy of 
the rates in (2.2), even an initially isotropic phonon distribution will develop into an 
anisotropic distribution, i.e. the distribution function will depend on the propagation 
direction. In a first approximation, we will neglect this directional dependence and work 
with distribution functions averaged over the propagation directions, 

(3 .1)  

We retain, however, the dependence on the polarisation. The transport equation for 
the averaged distribution function takes the form 

f,(v,  t )  = - 2 v 5 y , f , ( v ,  t )  + 2 1 d v ‘ v ’ 4 y ( v / v ’ , j , j ’ ) f I , ( v r ,  t )  
I ’  

- v4M,f,(v, t )  + c v“(j,j’)f, ,(v, t) .  
I ’  

The averages in (3 .2)  have to be performed in the following way: 

where vY3 = J d Q  v i 3 .  
Here, A stands for y and M ,  respectively. It can be shown easily that the permut- 

ation of the branches of the two generated phonons in the characteristic function 
y( v/v’, j ’  -+ j + j ” )  leads to the symmetry condition 

y ( v / v ’ , j ’ + j  + j ” )  = y((v’ - v)/v”+j”+j). (3 .5)  

This allows one to derive a relation between the zeroth and first moment with respect to 

Io’ d ( v / v ’ ) y ( v / v ’ ,  j ’+ j  +,if‘) 

v l v ’ :  

1 

d ( v / v ’ ) ( v / v ’ ) ( y ( v / v ’ , j ’ ~ j  + j ” )  + y(v/v‘ , j ’+j’’  + j ) )  (3 .6)  
= 

and furthermore 
1 

d(v/v’ )y(v /v’ , j ’ -+ j  + j ” )  = 4y,,. (3.7) 

In an isotropic non-linear elastic medium, an initially isotropic distribution of acoustic 
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phonons will remain isotropic during the evolution of the cascade, and no additional 
approximation has to be made to arrive at equation (3.2). The characteristic functions 
occurring in this equation are expressed analytically in terms of the Lam6 constants of 
second and third order in appendix 1. 

As the maxima of the distribution functions of longitudinal and fast-transverse 
phonons move to lower frequencies with increasing time, they pass a frequency range 
where the spontaneous decay and the elastic scattering become equally important. With 
further decreasing frequency, the scattering becomes dominant leading to detailed 
balance between the phonon branches, i.e. if the distribution functionf,(v, t )  isexpanded 
in eigen functions of the scattering operator 

M (  j ,  j ’ )  - M j  (3.8) 

only the component corresponding to the eigenvector 

with eigenvalue zero will survive. It is then sufficient to work with the effective rate 
equation for this component 

f(v, t )  = -2v5yf(v, t )  + dv””y(v/v’)f(v’, t )  J 
which contains the new averaged characteristic function 

where u - ~  = C j  u i 3  and 

4y  = I,’ d(v/v’)y(v/v’). 

(3.10) 

(3.11) 

(3.12) 

The discussion of the decay cascades and the equations determining their behaviour 
given so far relies on the fact that the defects in the system can be treated as individual 
incoherent scatterers for the acoustic phonons. For wavelengths of the phonons under 
consideration considerably larger than the average distance of the defects, this approxi- 
mation is, however, expected to break down. For sufficiently low frequencies, the 
defective crystal will merely act as an effective elastic medium for the acoustic phonons, 
and concerning the relaxation of a non-equilibrium phonon distribution, the physical 
situation will be similar to that in the high-frequency regime described above. 

With increasing phonon occupation number during the decay cascade, the linear 
approximation in the rate equations is no longer valid, and the non-linear terms in 
Peierls’ collision operator have to be included [9] (see also appendix 2). These terms 
contain, apart from the occupation numbers, the characteristic functions introduced 
above, and no further integral kernels occur. 
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2 5  Figure 1. Normalised average character- 
istic function (histogram) for the anistropic 
medium in comparison with the normal- 
ised characteristic function obtained in the 
isotropic approximation (full curve), by 
averaging over the polarisations of the 
decay products. The other curves show the 
characteristics of each process ( -  - -, 

L+ T? + T ~ ) .  The polarisation vectors of 
the transverse modes T ,  and r2 are parallel 
and orthogonal to the q -9 ‘  plane, 
respectively. The Lam6 constants in the 
isotropic approximation [13] are: U = 

2 0  

1.5 

1 .o L + L + T i ; - - - , L + T ,  +Ti;----, 

0.5 

0 1 4.65, A = 5.70,p = -9.90, y = -5.83. 
v i v ’  

4. Scaling properties 

It has been shown by Kazakovtsev and Levinson [3], and later with different arguments 
by Happek et a1 [ 11, 121, that the solution of equation (3.10) after an initial time interval, 
which depends on the initial conditions, will have the following scaling form: 

f(v, t )  = t2’5h(U) (4.1) 

where 

U = ( 2 y t ) ” b .  

The latter authors have confirmed this scaling behaviour experimentally. The function 
h(u)  depends on the shape of the averaged characteristic function y ( v / v ’ > .  For a 
comparison with their experimental results, Happek er a1 have calculated the function 
uh(u) from the transport equation (3.10) with the following ansatz for the averaged 
characteristic function: 

y ( v / v ’ )  = N,(v/v’)“(l - v/v’)” (4.3) 

where N ,  is determined by the normalisation. They found best agreement for the 
exponent K = 8. The shape of the function on the right-hand side of equation (4.3) is, 
however, clearly different from the characteristic function shown in figure 1 and in 
particular does not show the correct behaviour for small v / v ’  derived by these authors 
and by Kazakovtsev and Levinson [3]. We have therefore calculated the scaling function 
for the energy distribution, S ( U )  = uh(u) ,  from the characteristic functions of figure 1, 
and in figure 2 we compare the result with the experimental data of Happek et a1 and 
their theoretical result for S ( U )  obtained by using the ansatz (4.3). The fact that the 
characteristic functions used in our calculation show the correct behaviour for small 
values of v / v ’  is reflected in a better agreement with the experimental data in the small- 
U region. In the neighbourhood of the maximum of s ( ~ ) ,  however, the agreement is 
worse, while on the right wing of the curve, the result is inconclusive because of the 
scatter of the experimental data. 

A scaling form for the solution of the rate equations can also be derived for the case 
of absent defect scattering. In showing this, we confine ourselves to the isotropic case, 
where only the spontaneous decay of the longitudinal modes (L) has to be taken into 
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U 

Figure 2. The function S(u)  = uh(u) 
obtained from the averaged characteristic 
function (1) of figure 1 in comparison with 
the experimental data of references [ l l]  
and [12] (from the measured spectral 
distribution after 7 x 10” 5 (x) ,  17 X 
lo8 s (+) and 50 x loR s (0). The broken 
curve isobtained by replacing the averaged 
characteristic in equation (3.10) by the 
ansatz (4.3). 

account, while the distribution function of the transverse phonons (T) is monotonically 
increasing with time. After an initial time interval, the longitudinal part of the distri- 
bution function takes the form 

fL(v, t )  = tU/’hL(u) (4.4) 

U = (2yLt)l/’v. (4.5) 

where 

The energy initially deposited in the system of longitudinal phonons is transferred to 
transverse phonons during the cascade according to the power law 

(4.6) EL([) c t ( U - ? ) / ’ *  

The exponent p depends in a non-trivial way on the relative strengths of the different 
decay processes. By using the energy conservation for the total system of longitudinal 
and transversephonons, it can be shown that p is related to the first (M,)  and sixth ( M 6 )  
moments of the function hL via (,U - 2)/5 = - - y ( ~ ,  T)~[’M,M;’ where 

I 

Y(L, T) = f lo d(v/vr)(v/v’)y(v/vr,  L,  T). (4.7) 

With the characteristics calculated for the decay of longitudinal phonons in CaF,, we 
obtain p = -2.24. 

5. Numerical calculations for CaF, 

While in the isotropic case only longitudinal phonons decay and the two transverse 
branches are degenerate, i.e. L +  T + T and L +  T + L, there is a greater variety of decay 
processes in anisotropic media. The following types of processes have been taken into 
account in the numerical calculations: 

L +  ST -/- ST L +  ST -/- F T  L - + S T + L  

L - + F T + F T  L - + F T + L  
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t -ST+ST 

V I V '  

Figure 3. Characteristic functions of longi- 
tudinal phonons. The parameters used for 
the data in this and the following figure are 
listed in table 1. 

FT- ST + ST ET- ST + F T  FT- ST 3- L. 

The intra-branch decay of the longitudinal mode occurs only as a collinear process in 
the non-dispersive approximation and is forbidden in the presence of normal dispersion. 
It has been demonstrated [17, 191 that realistic values for the dispersion cause the intra- 
branch decay of transverse modes to be negligible. The decay ST- ST + FT has only been 
found in small parts of solid angle very close to the direction of degeneracy of the two 
transverse branches. In our numerical calculations, it has been disregarded. In the 
anisotropic case the characteristic functions have been calculated numerically and are 
presented in the form of histograms. The zeros in the argument of the delta function 
with respect to k in equation (2.4) have been determined with the help of the analytic 
expressions for the sound velocities given by Every [20,21]. For the integration over 
solid angle dQ' ,  we have used a gaussian algorithm with meshes of several thousands of 
points adapted to the shape of the integration area. For the integration over dQ,  17 
points have been positioned in the irreducible segment of solid angle. 

The experimental elastic constants enter the matrix element V 3  as input parameters. 
Unfortunately, the third-order elastic constants at liquid helium temperature are not 
available. In order to avoid numerical inaccuracies due to compensations in linear 
combinations of second- and third-order elastic constants as far as possible, we have 
taken the room-temperature data set for these combinations [22]. For the frequencies 
and eigenvectors, however. the low-temperature second-order elastic constants [23] 
have been used. because the density of states may depend sensitively on them. 

The characteristic function is proportional to the probability for a phonon of fre- 
quency v' and polarisation j '  to decay per unit time into two phonons with one in the 
frequency interval dv and polarisation J .  The area under the normalised characteristic 
function y(v/v', j '  - j + jn)(4y, )-' for a certain branch combination represents the 
relative probability for this type of decay process to occur. In figure 3 the characteristic 
functions for longitudinal phonons are shown. The anisotropy has been fully taken into 
account. The basic features of the corresponding curves for the isotropic medium 
(figure 1) are maintained, but due to the average over the propagation direction the 
characteristics have a smoother shape. As in the isotropic case there is a cut-off at high 
and low frequencies for the decay into transverse phonons, and a single cut-off for the 
decay into a longitudinal and a transverse phonon. In the anisotropic medium the decay 
into transverse phonons is no more symmetric because of the non-symmetric process 
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Table. 1. Input parameters for CaFZI 

Low-temperature elastic moduli of 
reference [23] High-temperature elastic moduli of reference [22] 

t Units in 10"lN m-:. Mass density p = 3210.7 kg m-3. 

viv' 
1 Figure 4. Characteristic functions of fast- 

transverse phonons. 

L+ ST + FT. Figure 4 shows the characteristic functions for the FT phonons. These func- 
tions vanish in the isotropic case. The dominant decay processes into transverse phonons 
cover the complete spectrum and do not present such strong features as in the preceding 
case (figure 3). The decay into longitudinal phonons plays a minor role. Compared with 
figure 3, the structure of the non-symmetric decay into longitudinal phonons appears on 
the other side of the frequency spectrum, while FT and ST phonons are generated in 
preference on the same side of the frequency scale. For the decay of a FT phonon, for 
example, longitudinal phonons are generated only at frequencies lower than the cut-off 
frequency, while they occur at frequencies higher than the cut-off frequency for a decay 
of a longitudinal phonon. 

The system of coupled integro-differential equations (3.2) has been solved with the 
method of Runge and Kutta. Energy conservation is verified in each step. Figures 5(a)- 
( c )  show the temporal evolution of the distribution functions in the absence of scattering. 
We start from a monochromatic source of longitudinal phonons of frequency v o  = 
1THz. The initial state has not been shown in the diagrams. In the first time steps, the 
distribution function is dominated by the shape of the characteristic function. Due to 
the v 5  law, the high-frequency longitudinal phonons decrease rapidly. The decay of fast- 
transverse phonons proceeds much more slowly because of their smaller damping. The 
slow-transverse phonons do not participate in the decay process. Their lifetime is in our 
approximation infinite, ysT = 0. Our numerical calculations for the reduced damping 
constants of the longitudinal and fast-transverse branches yield 

yL = 2.7 x 10-55~4 Yrr = 5.0 x i o - 5 ~ .  (5.1) 
Already after the first time interval of 4 x lo-%, which corresponds to the lower end of 
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Figure 6 .  Distribution function f ( v .  t ) .  
v E [U, 1 THz]. t E [O .  8 x 10-l s ]  in the 
detailed balance regime. 

the timescale in figure 5 ,  the percentage energy distribution is ( 3 % ~ ,  35%m, 6 2 % ~ ~ ) .  
At this stage the energy distribution of  phonons has already passed its maximum. For 
long times all phonons will be converted into non-decaying ST phonons. At the last time 
step in figure 5 ,  the energy distribution is approximately (O%L, 1 4 % n ,  8 6 % ~ ~ ) .  The 
longitudinal phonons have nearly completely disappeared. 

The evolution of the distribution function for a real crystal containing elastic scat- 
tering centres in the form of impurities and isotopes is shown in figures 5 ( d ) - ( f ) .  Our 
numerical calculations have been performed with a ratio of decay and scattering rates 
of ML(yLvo) - ’  = 0.03. The strength of the mode conversion is determined by the scalar 
products of the polarisation vectors, which may be expressed by the ratios 

M(n, ST):~~(L, ST):~~(L, FT) = 4.31:0.76:0.55. (5.2) 
Here, we have defined 

M ( j ,  j ’ )  = M ( j ,  j ’ )u1’3. 

Furthermore, 

v $ : v $ : u L 3  =6.2:4.4:0.8.  

(5.3) 

(5.4) 
The peaks in the uppermost frequency interval of transverse phonons result from 
scattering processes of the monochromatic source of longitudinal phonons. Slow-trans- 
verse phonons decay indirectly via mode conversion [7,8]. At low frequencies the 
distribution function is governed by scattering, while at high frequencies decay domi- 
nates, in accordance with the qualitative discussion in § 3 .  The energy distribution after 
the initial time interval still remains the same as in the preceding case. At the last time 
step, however, scattering is effective ( l % ~ ,  25%m, 74%sT). In the regime of detailed 
balance, the energy is distributed over the branches according to the density of states, 
in the present case ( 6 . 8 % ~ ,  3 8 . 6 9 % ~ ~ ,  5 4 . 5 1 % ~ ~ ) .  

6 .  Conclusions 

In summary, it has been shown that the decay cascades of THz phonons in CaFz 
observed by Happek et a1 can be described in terms of non-linear elasticity theory. In 
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this description, the anisotropy of the phonon-phonon interactions, as given by the 
experimental elastic constants of second and third order, is fully taken into account and 
no adjustable parameters have been introduced. Furthermore, the temporal evolution 
of the spectral distribution over the phonon branches has been studied numerically, 
using characteristic functions for the phonon decay averaged over directions. The 
qualitative differences of the phonon dynamics in the presence and absence of elastic 
scatterers in the form of mass defects have been established, and several predictions 
made by Levinson and co-workers have been confirmed. A further scaling law has been 
found for the phonon distribution function in isotropic elastic media without elastic 
scattering. The calculations presented here do not cover the regime of very low fre- 
quencies or very high defect concentration, where the approximation of incoherent 
scattering, made throughout this paper, is not applicable. They can, however, easily be 
extended to include effects of a finite ambient temperature. Further theoretical work is 
desirable to study effects of phonon dispersion, which influences especially the anhar- 
monic decay of the slow-transverse phonons. The properties of the latter are of interest 
in regimes of low frequency. 
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Appendix 1. Characteristic functions for isotropic elastic media 

For isotropic non-linear elastic media, the characteristic functions y( v / v ’ ,  g j ,  G ’ j ’ ) ,  
which enter equation (3.2), have been studied numerically by Obermayer [13]. They 
can be calculated from the following analytical formulae in terms of the Lame constants 
of second and third order. For the derivation of these expressions, one may proceed in 
a way similar to the calculation of the damping constants by Tamura [15], and the 
definition of the Lame constants is the same as in reference [15]. To simplify the notation, 
we introduce the abbreviations 

where vL and vT are the longitudinal and transverse sound velocities. The characteristics 
can then be expressed in the form 

y ( n 7 j 5  L) = y(n, L + j  + j ’ )  y(n,  L + j  + j ’ )  = N j ( n ,  L + j  + j ’ )  (‘4.3) 
i’ 

y(n, L + T + L) = j ( 1  - a,  L +  L + T) (A.5) 
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u(n, L + T  4- T) = ?(n, L +  T I  t T I )  f y(H.> L+ T2 + T2) 

where 

?(n, L +  T,  + T ~ )  = { [ C 2 ( m  - xT)* - C3(1 - x+)]n(I - n)- '}* 

?(n, L +  T~ + T*) = [C4(xT - m) + CsxT(l - xT~n)12~ 'n2 .  

The quantities xL and xT are given by 

x L  = (1/2n)[1 + n2 - (1 - n)*r2]  

X T  = (1/2n)[r-' - r(I - an)]. 

The factor N can be calculated from 

N = 4 d T ~ p - ~ .  

Here, p is the mass density. An analytic expression for the reduced damping constant 
yL of longitudinal phonons due to the spontaneous decay can be found in reference [17]. 
The quantities C,, . . . , C5 are given in terms of the Lame constants via 

c, = 2p + 47 + A + 3p (A. 12) 

c* = p + A + 2(y + ,U) (A.13) 

C , = P + 2 y + A  (A.14) 

C , = P + A  (A.15) 

c5 = 2 ( y  + ,U) .  (A. 16) 

The Lame constants p and y of Tamura El51 are equal to v 2  and v g  of Thurston and 
Brugger [24]. 

Appendix 2. Temporal evolution of transverse phonon occupation numbers via 
up-conversion 

In the high-frequency regime, where the impurity scattering rate is much smaller than 
the damping rate due to spontaneous decay, the longitudinal and fast-transverse com- 
ponents of the decay cascade move rapidly to lower frequencies generating also slow- 
transverse phonons in the decay processes, which cannot decay directly via three-phonon 
interaction. It has been pointed out by Guseinov and Levinson [7,8] that these phonons 
can decay indirectly on a longer timescale via mode conversion due to impurity scattering 
into directly decaying phonons. An effective equation for the temporal evolution of the 
occupation numbers of the non-decaying modes and a scaling law for their dependence 
on time and frequency have been derived by these authors. In the absence of incoherent 
scatterers, this type of indirect decay is, however, not possible. A redistribution of the 
occupation numbers of the non-decaying modes can then be caused by up-conversion 
into directly decaying phonons. To take account of these processes. rate equations for 
the phonon occupation numbers have to be considered, which contain the complete 
non-linear Peierls collision integral [25] 

a 
-n4(v) = l v 4  dS2' dv'y(vf/v,  qj+ q'j' + q"j") i IoU a t  1'1'' 

x {-n41(v)[n4.,.(vf) + nB'is8(v - v') + 11 + n48,8(v')ne"i.(v - v')} 
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d v f v ' 4 ( v ' / v ) 2 ~ ( v / v ' , q ' ~ ' ~ q ~ +  q'"'') 
i'i" 

x {nq ' i ' (v ' ) [nqj (v )  + n&' - v )  + 11 - ngj (v)nrr (v '  - v)} (A.17) 

where q = q - ( ~ ~ ~ i i / u ~ ~ ~ ~ ) ( v ' / v ) q ' .  We now confine ourselves to the isotropic case, 
where only the longitudinal phonons decay directly. To derive an effective equation for 
the occupation numbers of the transverse phonons, nT,  we retain only terms up to second 
order in nT and eliminate the longitudinal occupation numbers in the same way as has 
been done in references [7] and [8]. This finally leads to an equation of the form 

- jvx d v ' V ' 4 G 2 ( V / V ' ) n ~ ( V ) n ~ ( V '  - 2'). 
The kernels GI and G2 depend only on the frequency ratios. 

(A. 18) 
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